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A B S T R A C T

Achieving appreciable elastocaloric effect under low external field is critical for solid-state cooling technology.
Here, a non-isothermal Phase-Field Model (PFM) coupling martensitic transformation with mechanics, heat
transfer and magnetostrictive behavior is proposed to simulate Magneto-elastoCaloric Effect (M-eCE) that is
induced by magnetic field in a multiferroic composite (e.g., Magnetostrictive-Shape Memory Alloys (MEA-SMA)
composite). In the PFM, a nonlinear constitutive hyperbolic tangent model is utilized to model the macroscopic
magnetostrictive behavior of MEA, and the heat transfer coupled with phase transformation is employed to
calculate the adiabatic temperature change (𝛥𝑇ad) during M-eC cooling cycles. The influences of magnetic field,
geometrical dimension, and ambient temperature on 𝛥𝑇ad are comprehensively investigated. Machine Learning
(ML) is further conducted on the database from PFM simulations to accelerate the prediction and design of
MEA-SMA composite with an improved 𝛥𝑇ad. It is found that a large 𝛥𝑇ad of 10–14 K and a wide working
temperature window of 30 K can be achieved under ultra-low magnetic field of 0.15–0.38 T by optimizing the
composite’s geometrical dimension. The present work combining PFM and ML for evaluating M-eCE provides
a theoretical framework for the optimization of M-eC cooling devices, and is also potentially extended to other
multicaloric effects (e.g., electro-elastocaloric effect).
1. Introduction

Solid-state cooling techniques based on the elasto- [1–3], magneto-
[4,5], and electro-caloric [6,7] effects effectively reduce the global
annual emission of greenhouse gases, thus alleviating a series of neg-
ative geological effects caused by global warming [8]. Compared with
traditional refrigeration techniques using environmentally harmful flu-
ids, the environmentally friendly and efficient solid-state cooling tech-
niques open up a magnificent prospect for the future refrigeration
industry [9]. Elastocaloric cooling, exploiting the change in tempera-
ture or entropy during the stress-induced Martensite Transformation
(MT) of Shape Memory Alloys (SMAs), has recently emerged as a strong
solid-state cooling technology candidate due to the great adiabatic
temperature change (𝛥𝑇ad) compared to magneto- and electro-caloric
cooling [10,11]. However, the larger required stress activating MT in
elastocaloric cooling hinders its commercial application, for instance, ≥
600 MPa for common Ni-Ti alloy [12–14], ∼800 MPa for Ni2FeGa [15],
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∼300 MPa for Cu-Al-Mn [16], and 320 MPa for Cu-Zn-Al [17,18]. In
addition, the magnetic or electric field is handily applied to caloric
materials with less heat loss, compared with the contact loading in elas-
tocaloric devices [19]. Thus multicaloric materials and configurations
integrating strengths in various solid-state cooling will have broader
prospects in the much-needed compact and environmentally friendly
refrigeration technologies [20,21].

In 2018, Hou et al. [22] firstly demonstrated magnetic-field ma-
nipulation of the Magneto-elastoCaloric Effect (M-eCE) in a Terfenol-
D/CuAlMn composite. Different from the stress-induced eCE in meta-
magnetic SMAs [23], the magneto-elastocaloric cooling derives its
functionalities from the rich physics of Magneto-strictive-Shape Mem-
ory Alloy (MEA-SMA) composite structure, as shown in Fig. 1. Such
a composite system contains a Terfenol-D MEA cuboid, a superelastic
MnCu SMA cuboid, and a frame to constrain these two. When a
magnetic field is applied, the SMA cuboid is compressed owing to the
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Nomenclature

Acronyms

ANN Artificial Neural Network
FCC Face-Centered Cubic
FCT Face-Center Tetragonal
HT Hyperbolic Tangent
M-eCE Magneto-elastoCaloric Effect
MAE Mean Absolute Error
MEA Magnetostrictive Alloy
ML Machine Learning
MT Martensite Transformation
PCC Pearson Correlation Coefficient
PFM Phase-field Model
RMSE Root Means Square Error

magnetostrictive effect of Terfenol-D, and a temperature rise can be
observed in SMA due to the release of latent heat during the forward
MT. Conversely, upon the removal of the magnetic field, the force
loaded on SMA is released, resulting in a temperature decrease due to
the absorption of latent heat during the reverse MT. Here, magnetic
field is applied instead of mechanical field to induce the MT, and thus
𝛥𝑇ad of SMA can be manipulated by the magnetic field in the MEA-
MA composite. M-eCE cooling combines the advantages of large 𝛥𝑇ad
n elastocaloric cooling and low magnetic field without contact in mag-
etocaloric devices. Other similar state-of-the-art approaches, such as
lectric-field manipulation of the magnetocaloric effect in a FeRh/PZT
omposite [24], dual-stimulus multicaloric effect in FeRh/BTO com-
osite [25], dual-peak phenomenon of magnetocaloric coupling in
i/PZT/Terfenol-D composites [26], and multicaloric effect in Ni-Mn-

n [27] and Ni-Mn-Ti [28], are built to explore the multicaloric effect
y applying multiple field to composite materials.

However, efforts on theoretical and experimental M-eCE studies
re still highly desired [20,22], which involve eCE caused by fer-
oelasticity in SMA and magnetostrictive behavior in MEA. To opti-
ize the design of MEA-SMA composite system, a thermo-magneto-
echanical coupling model is important and urgently needed. In gen-

ral, the eCE is simulated by either Phase-Field Model (PFM) [29–32]
r thermal–mechanical phenomenological constitutive models [33–35].
he phenomenological Tanaka-type model [17,36,37], the analytical
odel for operating caloric devices [38], the thermo-mechanically cou-
led constitutive model [39], the phase transformation kinetic models
40–42], and crystal plasticity-based constitutive model [43–45] can
e used to obtain the macroscopic elastocaloric properties, but have
ifficulties in simulating the spatial and temporal evolution of mi-
rostructure details during the MT. PFMs [46–50] utilize order pa-
ameters to describe MT, which can capture microstructure evolution,
eat transfer, and stress/strain/temperature field during elastocaloric
ooling. Kang et al. [51–54] conducted a comprehensive investiga-
ion into the deformation mechanism and elastocaloric effect in Ni-Ti
MA using PFM. PFM can be employed to understand the solid-state
ooling mechanism and optimize for a higher 𝛥𝑇ad. Aiming at the mag-
etostrictive behavior in MEA, several nonlinear constitutive models
55–57] have been proposed. Zhan et al. [58] have successfully pre-
icted the magneto-mechanical deformation and magnetization be-
aviors of MEA by means of a magneto-thermo-mechanical coupling
onstitutive model. On the other hand, phase-field microelasticity the-
ry and micromagnetic approaches are also employed to model the
agnetostrictive responses [59,60] in MEA and ferromagnetic domain

volution [61,62] in ferromagnetic SMA.
Up to now, the PFM to describe M-eCE in MEA-SMA multiferroic

omposite has not been reported yet. There is a headache involv-
2

ng multiscale and multiphysics including magnetics, mechanics, and
SMA Shape Memory Alloy

Greek

𝛼 Thermal conductivity
𝛽 Gradient energy coefficient
𝜂 Order parameter
𝜇 Magnetic permeability
𝜙 Magnetic potential
𝜌 Density
𝜎 Stress
𝜀 Strain

Roman

𝐴 Area
𝐵 Magnetic induction
𝑐 Elastic constant
𝛥𝐺 Energy barrier
𝛥𝑇 Temperature change
𝐹 Total free energy
𝑔 Magnetostrictive constant
𝐻 Magnetic field intensity
𝐿 Kinetic coefficient
𝑙 Length
𝑄 Latent heat
𝑇 Temperature

Subscripts

act Activation
ad Adiabatic
𝑖 Martensite variant 𝑖
m Martensite

Superscripts

chem Chemical free energy
ela Elastic strain energy
grad Gradient energy
max Maximum
ref Reference
th Thermal
tr Transformation

thermodynamics in the simulation of M-eCE. Yu et al. [33,63–65] con-
structed a multiscale magneto-thermo-mechanically coupled constitu-
tive model for calculating M-eCE, which includes a
magneto-mechanically coupled constitutive model for MEA and a crys-
tal plasticity based thermo-mechanically coupled constitutive model
for SMA. Dornisch et al. [66] constructed a PFM of multiferroic het-
erostructures involving ferroelectric and ferromagnetic layers. The
majority of these studies [33,38,39,63,64,66] have primarily focused
on modeling the macroscopic-scale temperature changes of M-eCE in
multiferroic composite. Describing the detailed evolutions of stress,
strain, temperature, MT, and microstructure during the M-eC cooling
cycle is challenging. Additionally, the tedious constitutive model with
lots of fitted parameters increases the difficulty of extending the model
to other systems. Herein, the PFM coupled with the nonlinear con-
stitutive model of MEA is proposed to simulate M-eCE in MEA-SMA
composite.

In addition, Machine Learning (ML) provides a significant potential
to optimize and accelerate the development of magnetocaloric [67,68],
electrocaloric [69] and elastocaloric effect [70–72]. For instance, Zhao
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Fig. 1. Illustration of multiferroic composite and magneto-elastocaloric effect. The frame of the device acts as a fixed constraint against the overall extension of the multiferroic
composite, thus transferring the mechanical load from the Terfenol-D to the SMA. Terfenol-D shows elongation when magnetic field 𝐻 is applied along the length of Terfenol-D.
Then, the elastocaloric Mn-Cu generates an adiabatic temperature change (𝛥𝑇ad) caused by martensite transformation under a magneto-induced strain ( 1⃝). This heated material
then releases heat to the surroundings and cools down to the ambient temperature ( 2⃝). When the stress is removed, the crystal structure transforms back to the austenitic phase
( 3⃝). Finally, the material cools down and is now able to absorb heat from the surroundings ( 4⃝).
et al. [70] adopted ML and theoretical calculations to discover the
multi-component Cu-Al-based SMA with the highest entropy change.
Similarly, by means of ML and first-principles calculations, 𝛥𝑇ad in
NiTi-based SMA can be predicted under relevant features including
volume change and lattice parameters [71]. These indicate that ML
combined with other calculation methods could provide efficient av-
enues for predicting M-eCE and spearhead unknown caloric materials
discovery.

In this work, we combine ML with PFM to accelerate the calculation
and optimization of M-eCE using data obtained from PFM simulations.
In detail, a non-isothermal phase-field framework coupling MT with
mechanics, heat transfer, and magnetostrictive behavior is proposed
to evaluate M-eCE. The evolutions of stress, strain, temperature, MT,
and microstructure during the M-eC cooling cycle are captured, and
the effects of magnetic field, geometric dimension, and temperature on
𝛥𝑇ad are revealed. Further, ML is shown to efficiently predict 𝛥𝑇ad of
M-eCE and optimize MEA-SMA composite’s geometrical dimension with
a higher 𝛥𝑇ad. This work provides a robust theoretical framework that
combines PFM and ML for designing multiferroic composite with giant
M-eCE.

The paper is organized as follows. In Section 2, we present the
details on PFM and ML for M-eCE, emphasizing the non-isothermal PFM
that combines MT, heat transfer, and magnetostrictive behavior. We
then in Section 3 carry out a series of phase-field simulations for fer-
roelastic behavior and M-eCE in the multiferroic composite, and utilize
ML to accelerate the calculation of 𝛥𝑇ad and efficiently optimize the
M-eCE configuration. Finally, Section 4 gives the conclusive summary.

2. Phase-field model and machine learning

In this section, we first apply a non-isothermal phase-field frame-
work to a model M-eCE in MEA-SMA composite, utilizing MnCu as
SMA and Terfenol-D as MEA. Detailed formulations for the total free en-
ergy, constitutive relations, field equilibrium equations, and evolution
equations are presented. Then, ML is introduced to accelerate the opti-
mization of 𝛥𝑇ad in M-eCE. In MnCu SMA, there exist a Face-Centered
Cubic (FCC) high-symmetry austenitic phase at high temperature and
three variants of a Face-Center Tetragonal (FCT) low-symmetry marten-
sitic phase at low temperature [73]. The three martensitic variants
are energetically equivalent. Herein we choose non-conserved order
parameters 𝜂𝑖 (𝑖 = 1, 2, 3) to represent the phase structures in PFM, and
the value of 𝜂𝑖 varies from 0 to 1. For Terfenol-D MEA, a nonlinear
constitutive model is adopted in PFM to describe the magnetostrictive
behavior.
3

2.1. Total free energy

In the PFM, the total free energy 𝐹 of the system is driving force
for microstructure evolution and consists of the chemical free energy
𝐹 chem, the gradient free energy 𝐹 grad, and the elastic strain energy 𝐹 ela,
i.e.,

𝐹 = 𝐹 chem + 𝐹 grad + 𝐹 ela. (1)

The chemical free energy represents the chemical driving force of the
MT in a stress-free system, which can be expressed as a Landau 2-3-4
polynomial [74], i.e.,

𝐹 chem =∫𝛺

[𝐴
2
(𝜂21 + 𝜂

2
2 + 𝜂

2
3 ) −

𝐵
3
(𝜂31 + 𝜂

3
2 + 𝜂

3
3 )

+ 𝐶
4
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2
2 + 𝜂

2
3 )

2
]

d𝑣,
(2)

where 𝐴, 𝐵 and 𝐶 are positive temperature-dependent coefficients,
expressed as 𝐴 = 32𝛥𝐺∗, 𝐵 = 3𝐴 − 12𝛥𝐺m and 𝐶 = 2𝐴 − 12𝛥𝐺m.
𝛥𝐺∗ is the temperature-dependent energy barrier between austenite
and martensite. 𝛥𝐺m is the driving force of MT. Since the MT is
a first-order diffusionless structural transformation and is not sharp
in real materials [75], herein we formulate the energy barrier as a
smooth function of temperature. Specifically, we take advantage of the
hyperbolic tangent function to modify the piecewise 𝛥𝐺∗ function [49],
i.e.,

𝛥𝐺∗ =0.3𝑄
64

(

1 − tanh
(𝑇 − 𝑇0

𝛿𝑇

)

)

+
[0.8 + 0.06(𝑇 − 𝑇0)]𝑄

64

(

1 + tanh
(𝑇 − 𝑇0

𝛿𝑇

)

)

.
(3)

𝛥𝐺m is also a continuous function of temperature, i.e,

𝛥𝐺m =
𝑄(𝑇 − 𝑇0)

𝑇0
, (4)

where 𝑄 is the specific latent heat and 𝑇0 is the chemical equilibrium
temperature. Noted that 𝛿𝑇 is a new parameter associating with the
energy barrier, which could be adjusted according to the transfor-
mation temperature window from experimental results. We assume
a moderately sharp transition and set 𝛿𝑇 = 2 K in this work. This
modification could resolve the difficulty of calculating 𝛥𝑇ad by PFM
at the transition point.

The gradient energy or interface energy can be expressed as

𝐹 grad = ∫𝛺
1
2
𝛽
[

(∇𝜂1)2 + (∇𝜂2)2 + (∇𝜂3)2
]

d𝑣, (5)

where 𝛽 is the gradient energy coefficient related to the interfacial
energy density and interface thickness, and it is assumed to be isotropic.



International Journal of Mechanical Sciences 275 (2024) 109316W. Tang et al.

g

𝐹

e

𝜀

Table 1
Material and simulation parameters for MnCu SMA [48] and Terfenol-D MEA [55].

Parameter Name MnCu Terfenol-D

𝑐11 Elastic constant 76.588 GPa 81 GPa
𝑐12 Elastic constant 14.588 GPa 38.8 GPa
𝑐44 Elastic constant 31 GPa 21 GPa
𝑐66 Elastic constant 31 GPa 38 GPa
𝑔11 Magnetostrictive constant – 5.27 × 10−3 N/A2

𝑔12 Magnetostrictive constant – 3.77 × 10−4 N/A2

𝑔44 Magnetostrictive constant – 1.218 × 10−3 N/A2

𝑔66 Magnetostrictive constant – 2.204 × 10−3 N/A2

𝑇0 Chemical equilibrium temperature 245 K –
𝑇𝑐 Curie temperature – 650 K
𝑄 Latent heat 4.84 × 107 J/m3 –
𝐿 Kinetic coefficient 50 m3/s/J –
𝛽 Gradient energy coefficient 2.5 × 10−9 J/m –
𝛼 Thermal conductivity 40 J/m/s/K 13.5 J/m/s/K
𝜌 Density 7500 kg/m3 9520 kg/m3

𝑐𝑝 Specific heat 352 J/kg/K 330 J/kg/K
𝜇11 Magnetic permeability – 37.5 × 10−7 N/A2

𝜇33 Magnetic permeability – 37.5 × 10−7 N/A2

𝜇0 Permeability of vacuum 4𝜋 × 10−7 N/A2 4𝜋 × 10−7 N/A2

The MnCu SMA does not have magnetic-related parameters, and the parameters of Terfenol-D are determined using
a strain-based hyperbolic tangent model.
a
b

𝜎

𝑢

c
m
i
A

The elastic strain energy contains the transformation strain 𝜀tr
enerated by structural transformation. It can be given as

ela = ∫𝛺
1
2
𝐶𝑖𝑗𝑘𝑙(𝜀𝑖𝑗 − 𝜀tr

𝑖𝑗 − 𝜀
th
𝑖𝑗 )(𝜀𝑘𝑙 − 𝜀

tr
𝑘𝑙 − 𝜀

th
𝑘𝑙 )d𝑣, (6)

where 𝐶𝑖𝑗𝑘𝑙 is the component of the fourth-order elastic tensor, and
𝑐𝑖𝑗 in Table 1 are the elastic constants in Voigt notation, i.e. 𝑐12 =
𝐶1122, 𝑐34 = 𝐶3312, 𝑐56 = 𝐶2313. 𝜀𝑖𝑗 is the total strain tensor and is given
by

𝜀𝑖𝑗 =
1
2

(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)

, (7)

in which 𝑢𝑖 is the displacement. 𝜀tr can be expressed as the stress-free
igen strain, which is in general defined as
tr
𝑖𝑗 = 𝜀00𝑖𝑗 (1)𝜂1 + 𝜀

00
𝑖𝑗 (2)𝜂2 + 𝜀

00
𝑖𝑗 (3)𝜂3, (8)

𝜀00(𝑖) (𝑖 = 1, 2, 3) is determined by the orientation relationship and
lattice distortion between martensite and austenite with regard to the
FCC-FCT MT, i.e.,

[

𝜀00𝑖𝑗 (1)
]

=

⎡

⎢

⎢

⎢

⎣

𝜀3 0 0

0 𝜀1 0

0 0 𝜀1

⎤

⎥

⎥

⎥

⎦

,
[

𝜀00𝑖𝑗 (2)
]
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⎤

⎥
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⎦

,

[

𝜀00𝑖𝑗 (3)
]

=

⎡

⎢

⎢

⎢

⎣

𝜀1 0 0

0 𝜀1 0

0 0 𝜀3

⎤

⎥

⎥

⎥

⎦

,

(9)

where 𝜀1 = (𝑎 − 𝑎𝑐 )∕𝑎𝑐 and 𝜀3 = (𝑐 − 𝑎𝑐 )∕𝑎𝑐 . As well as 𝜀1 = 0.01 and
𝜀3 = −0.02 in MnCu SMA [48].

In addition, the thermal strain is computed as

𝜀th
𝑖𝑗 = 𝛼𝑖𝑗 (𝑇 − 𝑇 ref), (10)

where 𝛼𝑖𝑗 is a tensor representing thermal expansion. 𝑇 ref is the ref-
erence temperature at which there is zero thermal strain. In the PFM
simulations, 𝑇 ref is the initial temperature.

2.2. Nonlinear constitutive model for Terfenol-D

To model the magnetostrictive behavior in Terfenol-D MEA, a non-
linear constitutive hyperbolic tangent (HT) model is applied in this
work, which can be written as [55]

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 −
1
𝑘2
𝑔𝑖𝑗𝑘𝑙tanh(𝑘𝐻𝑘)tanh(𝑘𝐻𝑙)

𝐵𝑘 = 𝜇𝜀𝑘𝑙𝐻𝑙 +
2 𝑔𝑘𝑙𝑚𝑛𝜀𝑚𝑛

sinh(𝑘𝐻𝑙)
3

,
(11)
4

𝑘 cosh (𝑘𝐻𝑙)
where 𝐵𝑘 the magnetic induction vector, 𝜇𝑘𝑙 the magnetic permeability,
𝐻𝑘 the magnetic field intensity vector, and 𝐻 = −∇𝜙 where 𝜙 is
the magnetic potential. 𝑘 is a relaxation parameter that is adequately
chosen to make the independent variable of the hyperbolic function di-
mensionless, and is chosen as 𝑘 = 8×10−8 m/A. 𝑔𝑖𝑗𝑘𝑙 is magnetostrictive
modulus tensor, and 𝑔𝑖𝑗 in Table 1 are the magnetostrictive constants
in Voigt notation. The magnetostrictive behavior in Terfenol-D MEA is
shown in Fig. 3(b).

2.3. Field equilibrium equations

2.3.1. Mechanical equilibrium equation
The mechanics is considered in the modeling. For the body 𝛺 with

boundary 𝜕𝛺, the quasi-static mechanical equilibrium equation and
oundary conditions are described by

𝑖𝑗,𝑗 + 𝑓𝑖 = 0 in 𝛺, (12)

𝑖 = �̂�𝑖 on 𝜕𝛺𝑢, 𝜎𝑖𝑗𝑛𝑗 = 𝑡𝑖 on 𝜕𝛺𝜎 , (13)

where 𝜎𝑖𝑗 is the Cauchy stress and 𝑓𝑖 is the body force, and we assume
𝑓𝑖 = 0. �̂� and 𝑡 are the displacement and surface traction on the
boundary part 𝜕𝛺𝑢 and 𝜕𝛺𝜎 , respectively.

2.3.2. Force balance for multiferroic composite
For the contact mechanics, force balance for the multiferroic MEA-

SMA system should be always satisfied, and the force balance can be
simplified as

𝐴1𝐸1𝜀1 = 𝐴2𝐸2𝜀2, (14)

where 𝐴1, 𝐸1, 𝜀1 and 𝐴2, 𝐸2, 𝜀2 represent cross-sectional area, elasticity
onstant, and strain for Terfenol-D and SMA, respectively. Under a
agnetic field, the displacement without constraint of Terfenol-D is 𝜆𝑙1,

n which 𝑙1 is the length of Terfenol-D, and 𝜆 is magnetostrictive strain.
ssuming a real displacement 𝛥𝑙2 in SMA, the strain for Terfenol-D and

SMA is

𝜀1 =
𝑙1𝜆 − 𝛥𝑙2

𝑙1
, 𝜀2 =

𝛥𝑙2
𝑙2
. (15)

Substituting Eq. (15) into Eq. (14), the real strain or magneto-
induced strain 𝜀2 for SMA as

𝜀2 =
𝜆

𝐴2𝐸2∕(𝐴1𝐸1) + 𝑙2∕𝑙1
. (16)

Then, we nondimensionalize the area with 𝐴∗ = 𝐴1∕𝐴2, and length
with 𝑙∗ = 𝑙1∕𝑙2 to investigate the effect of geometric dimension on
M-eCE, seeing Section 3.2.3 for details.
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2.3.3. Magnetic equilibrium equation
The Maxwell equation which governs the magnetic part and the

magnetic boundary conditions have the form

𝐵𝑖,𝑖 = 0 in 𝛺 (17)

𝐵𝑖𝑛𝑖 = �̂� on 𝜕𝛺𝐵 , 𝜙 = �̂� on 𝜕𝛺𝜙, (18)

where �̂� is the prescribed value and �̂� is the given potential on the
boundary part 𝜕𝛺𝐵 and 𝜕𝛺𝜙, respectively.

2.4. Evolution equations

Here, time-dependent Ginzburg–Landau kinetic equation [76] is
used to govern the spatial and temporal evolution of 𝜂𝑖, i.e.,

�̇�𝑖 = −𝐿𝛿𝐹
𝛿𝜂𝑖

, (19)

where 𝐿 is the kinetic coefficient characterizing the interfacial migra-
tion and 𝐹 is the total free energy of the system.

Further, we can obtain directly 𝛥𝑇ad during loading and unloading
by the non-isothermal PFM simulations. The temperature evolution
equation can be derived as

𝜌𝑐 𝜕𝑇
𝜕𝑡

= 𝛼∇2𝑇 +𝑄( ̇𝜂1 + ̇𝜂2 + ̇𝜂3), (20)

where 𝜌, 𝑐 and 𝛼 are density, specific heat and the thermal conductivity
of the material, respectively. 𝑄 is the latent heat and plays a critical role
in temperature change during MT.

2.5. Machine learning methods

To accelerate the calculation of 𝛥𝑇ad and efficiently find the M-eCE
configuration with the highest 𝛥𝑇ad value, Artificial Neural Network
(ANN) based on the phase-field database is adopted. Genetic algo-
rithms, an important category of ML techniques that achieve the goal
of optimization [77,78], are chosen to improve M-eCE in this work.
As shown in Fig. 2, the time-saving ML replaces time-consuming PFM
simulations to calculate M-eCE by means of database obtained from
PFM simulations, thus accelerating the calculation and optimization of
the M-eCE system. ANN is a directed acyclic graph consisting of an
input layer, several hidden layers, and an output layer. By training the
model with a set number of data, it can construct a functional model
from an m-dimensional input feature vector 𝛼 to a corresponding one-
dimensional output feature vector 𝑄ANN. The calculation process for
every neuron is to take a weighted sum of its inputs 𝑥1, 𝑥2, 𝑥3... 𝑥𝑝,
send that weighted sum through an activation function, and output the
final result 𝑦. The mathematically expression for 𝑘th neuron in the 𝑙th
layer is calculated as [79]:

𝑦 = 𝑓act

( 𝑝
∑

𝑖=1
𝑤𝑙,𝑘𝑖 𝑥

𝑙,𝑘
𝑖 + 𝑏𝑙,𝑘

)

, (21)

where 𝑤 is weight, 𝑏 is bias, 𝑓act is activation function. 𝑖 is the index
of input, 𝑥 is the input vector to the (𝑙, 𝑘) neuron, and 𝑝 represents the
number of inputs to the neuron. 𝑝 = 4 and 𝑦 is 𝛥𝑇ad is this work, as
shown in Fig. 2.

In the multilayer perceptron, 70% of data is used for training
dataset, 20% for test dataset, and 10% for verification dataset. The
Levenberg–Marquardt method is chosen as the train function. In detail,
the target is 𝛥𝑇ad in output layer, and the input layer has four inputs
corresponding to four characteristics: the applied magnetic field, length
ratio and area ratio of MEA-SMA device, and ambient temperature.
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Fig. 2. Schematic illustrating the relationships among phase-field simulation, machine
learning, and M-eCE calculation. Machine learning based on the database of phase-field
results is adopted to accelerate the M-eCE calculation. The artificial neural network
consists of four inputs (magnetic field, length ratio, area ratio and temperature) and
one output (𝛥𝑇ad).

3. Results and discussion

In phase-field simulations, we utilize a three-dimensional domain to
model the M-eCE in the multiferroic MEA-SMA composite. The diagram
of this multiferroic composite system is shown in Fig. 1. The magneto-
induced strain advances the MT in SMA, thus achieving M-eCE. Both
ends of the composite are constrained, with a parallel magnetic field
applied along the length of Terfenol-D, and other boundaries are free
in PFM simulations. The prediction capability of the proposed PFM is
firstly verified by simulating the superelasticity of SMA, magnetostric-
tive behavior of MEA, and M-eCE in MEA-SMA composite. Then, the
influences of magnetic field, geometric dimension, and temperature on
𝛥𝑇ad are investigated. A set of database from PFM simulations is trained
using ML to predict and optimize 𝛥𝑇ad of M-eCE.

In addition, the finite element mesh size should be smaller than
the minimum value of interface thickness (𝛿 =

√

𝛽∕2𝛥𝐺∗ ≈ 14.8 nm)
between austenite and martensite, thus the mesh size is chosen as
𝛥𝑙 = 10 nm. The material and simulation parameters of MnCu [48]
and Terfenol-D [55] used for PFM simulations are summarized in Ta-
ble 1. The above PFMs are numerically implemented by finite element
method in the open source Multiphysics Object Oriented Simulation
Environment (MOOSE) [81], and see Appendix for details.

3.1. Ferroelastic behavior

MT would occur in MnCu SMA under external fields and leads to
extraordinary macroscopic behaviors, e.g., the shape memory effect and
superelasticity [48]. In order to validate the model, benchmark simu-
lations including that stress-induced MT of SMA and magnetostrictive
behavior of Terfenol-D are carried out. These phenomena are essential
for inducing the M-eCE in MEA-SMA multiferroic devices.

Fig. 3(a) shows the compression-unloading stress–strain response
of MnCu SMA under 270 K. Fig. 3(b) shows the magnetic field-
magnetostriction strain curve of the Terfenol-D. The superelasticity
effect during stress-induced MT is also clearly presented in MnCu
SMA. Upon stress loading, the small martensitic embryo (red stripes
for 𝜂 = 1) grows to be a large martensitic domain due to the stress-
induced MT. Upon unloading, the austenitic embryo (blue stripes for
𝜂 = 0) grows, restoring the original state. A homogeneous temperature
increment also takes place at the same area where the local strain
accumulation and MT is observed in phase-field simulation, which is
consistent with the experiment in CuZnAl SMA [15]. Furthermore, the
simulation results for magnetostrictive behavior of Terfenol-D agree
well with the experimental findings [22].
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Fig. 3. Phase-field results of (a) stress–strain behavior of Mn-Cu SMA and (b) magnetostrictive behavior of Terfenol-D MEA based on nonlinear constitutive hyperbolic tangent
model [80]. The martensite transformation occurs during the loading, accompanied by temperature change. The martensite and austenite phase are shown in red and blue,
respectively.
Fig. 4. Experimental and predicted result of magneto-elastocaloric effect in the MEA-SMA composite system: (a) waveform of applied magnetic field; (b) evolution of the overall
temperature change of SMA. The blue dotted and dashed lines represent the experimental [22] and simulated [33] results of CuAlMn M-eCE, respectively. The orange solid line
shows the temperature change of MnCu during the waveform of applied magnetic field.
3.2. Magneto-elastocaloric effect

For the integrity of the content, the experimental observations done
by Hou et al. [22] and phase-field simulations for the ultra-low-field
induced M-eCE of the MEA-SMA composite system are presented here.
Parameters such as 𝛥𝑇ad, the magnetic-field-induced cooling strength
𝛥𝑇ad∕𝜇0𝛥𝐻 (K T−1), and the working temperature window are critical
for characterizing the refrigeration capacity of M-eCE materials and
devices. These parameters are computed and discussed below. The
Terfenol-D cuboid with the dimensions of 200 nm × 50 nm × 650 nm
and the MnCu SMA specimen cuboid with the dimensions of 100 nm ×
10 nm × 50 nm are used in the phase-field simulation. The applied
magnetic field is 0.162 T as used in Hou et al. [22].

Fig. 4(a) depicts the waveform of applied magnetic field for the
composite system. The magnetic field is initially loaded to its maximum
value in a short period, and then remains unchanged for a while. After
that, the magnetic field is fully unloaded. Fig. 4(b) shows the evolution
of the overall 𝛥𝑇ad for MnCu SMA in the composite system, owing to the
elastocaloric effect. The PFM effectively captures the 𝛥𝑇ad rise or drop
of the SMA cuboid within the multiferroic composite system during the
rapid application and removal of the magnetic field, and the phase-field
predicted results are consistent with the semi-analytical and numerical
models [33,63] and the experimental ones [22]. 𝛥𝑇ad as large as 8 K
and 𝛥𝑇ad∕𝜇0𝛥𝐻 = 49.3 KT−1 are realized in this MnCu/Terfenol-D
composite.
6

3.2.1. Magneto-elastocaloric cooling cycle
Fig. 1 shows the frame of the M-eCE device. The mechanical strain

originated from the magnetostrictive response of Terfenol-D would be
transferred to SMA, thus generating eCE in SMA (the right side of
Fig. 1). The SMA is subjected to a MT from FCC austenite into FCT
martensite, which releases latent heat and increases 𝛥𝑇ad ( 1⃝ in Fig. 1).
This heated material then releases heat to the surroundings and restores
to the original temperature ( 2⃝). When the applied magnetic field is
removed, the crystal structure transforms back to the austenitic phase
and the temperature decreases owing to the inverse MT ( 3⃝). Finally,
the SMA becomes a heat sink and achieves MeC cooling ( 4⃝). The
detailed example of M-eCE is shown in Fig. 5. The magnetic field
is applied along the 𝑧-direction, and the loading history is shown as
red line in Fig. 5a. Four stages including loading, holding (heating),
unloading, and holding (cooling) are involved according to the loading
history.

During loading and unloading, the applied magnetic field is rapidly
increased to 0.19 T in Terfenol-D, and no heat flux is set to keep adia-
batic condition of this system, similar to the swift loading/unloading in
the experiment. The relationship between strain in SMA and the applied
magnetic field is shown in Fig. 5(b), which is similar to the stress–
strain curve under elastocaloric cooling and exhibits a hysteresis [49].
Note that the strain is fully recoverable, which is beneficial for fatigue
performance of the MEA-SMA composite. Meanwhile, the evolutions of
order parameter 𝜂3, temperature, and stress 𝜎3 in SMA, from 1⃝ to 5⃝
during a M-eCE cooling cycle, are shown in Fig. 5c.
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Fig. 5. (a) Adiabatic temperature change (𝛥𝑇ad) in SMA under a low magnetic field (𝜇0𝐻 = 0.19 T). (b) Strain in SMA vs. the applied magnetic field 𝜇0𝐻 in Terfenol-D. (c)
Evolutions of microstructure (𝜂3), temperature, and stress fields during the magneto-elastocaloric (MeC) cooling cycle. The size is 200 nm × 50 nm × 650 nm for Terfenol-D and
100 nm×10 nm×50 nm for SMA. The ambient temperature is 245 K. 1⃝ to 2⃝ represents the loading step, 2⃝ to 3⃝ represents the holding step, 3⃝ to 4⃝ represents the unloading
step, and 4⃝ to 5⃝ represents the holding step during the magneto-caloric cooling cycle.
During the loading, form 1⃝ to 2⃝, exothermic austenite–martensite
transformation occurs in SMA and 𝜂3 increases from 0 to 1. The
corresponding temperature rises rapidly from 245 K to approximately
253.4 K, with a heating 𝛥𝑇ad = 8.4 K obtained under a low magnetic
field of 0.19 T. 𝜎3 increases with the magnetic field due to the force
balance. During holding, from 2⃝ to 3⃝, the magnetic field is stationary,
the martensitic variant 3 remains but the temperature decreases due
to the heat transfer to the surroundings. During unloading, form 3⃝
to 4⃝, the endothermic martensite–austenite transformation cause the
decreases of temperature (a cooling 𝛥𝑇ad) and stress. During holding,
form 4⃝ to 5⃝, hypothermal SMA absorbs the external heat, all are back
to the original state, and then prepare for the next cooling cycle. These
simulation results on M-eCE and microstructure evolution indicate
that M-eCE can be soundly handled by the non-isothermal PFM. It
should also be noted that the tensile stress is very low (100 MPa) to
facilitate the fatigue performance, and the maximum compressive stress
(300 MPa) is smaller than the compressive strength of SMA.

3.2.2. Impact of magnetic field
Similar to the mechanical loading in eCE [16], the magnetic-

field loading in M-eCE demonstrates a positive influence on 𝛥𝑇ad. A
magnetic-field-dependent cooling strength is observed in Fig. 6, in
which the evolutions of strain and temperature of SMA during MeC
cooling cycle are captured. The applied magnetic field of 0.154 and
0.288 T results in a cooling 𝛥𝑇ad (close to heating 𝛥𝑇ad) of 10.8 and
12.4 K, respectively. The strain–temperature behavior during a MeC
cooling cycle, as shown in Fig. 6b, reflects a recoverable transfor-
mation strain 𝜀tr and 𝛥𝑇ad during loading and unloading. 𝛥𝑇ad and
𝜀 increase with increasing magnitude of magnetic field, showing
7

tr
that the magneto-induced strain in Terfenol-D is the driving force for
MT in SMA. Note that 𝜀tr under 𝜇0𝐻 = 0.154 T is higher than the
critical transformation strain (0.02) in MnCu SMA [48]. There is a
critical magnetic field that triggers the transformation strain in SMA,
which can induce M-eCE in the MEA-SMA composite system. Besides,
a satisfactory 𝛥𝑇ad of 10.8 K is calculated under an ultra-low magnetic
field of 𝜇0𝐻 = 0.154 T, offering theoretical guidance for low-field
driven caloric effect in multiferroic composites.

3.2.3. Impact of geometric dimension
It is known that the refrigerating capacity of the composite system

is proportional to the volume of MnCu SMA. Further investigation is
required to explore the impact of configuration size on the refrigeration
performance in MEA-SMA composites [22]. Here, the volume size
of MnCu is constant and we change the Terfenol-D size to evaluate
the impact of the geometric dimension. Compared with configuration
between 200 × 50 × 650 and 400×50×650 nm3 (Figs. 5(a) and 6(a)), a
comparable gap in 𝛥𝑇ad (8.4 K for the former and 11.5 K for the latter)
is observed under a same magnetic field of 0.19 T. This is attributed to
that the larger magneto-induced strain generates a greater 𝛥𝑇ad in the
bigger Terfenol-D cuboid.

Moreover, the magneto-induced strain in SMA can be briefly ex-
pressed in Eq. (16), and it is dependent on the stiffness, length and
cross-sectional area ratios of the Terfenol-D MEA and MnCu SMA. The
stiffness ratio of Terfenol-D and MnCu is constant. The unfavorable
length ratios and cross-sectional area ratios of Terfenol-D and MnCu
(proportional to strain, on the order of 10−2, required to actuate the
latter, but inversely proportional to magnetostriction of the former, on
the order of 10−3) are major weaknesses of this strategy. Therefore,
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Fig. 6. (a) Temperature evolution of SMA under various magnetic fields with 𝜇0𝐻 = 0.154, 0.192, 0.231, 0.288 T. (b) strain–temperature curves of SMA under various magnetic
fields. The size is 400 nm × 100 nm × 1300 nm for Terfenol-D and 100 nm × 10 nm × 50 nm for SMA. 𝛥𝑇loading and 𝛥𝑇unloading are the adiabatic temperature change during loading
(from 1⃝ to 2⃝) and unloading (from 3⃝ to 4⃝), respectively. A large magnetic field induces a large transformation strain, resulting in increased temperature change.
Fig. 7. The magnetic-field-dependent M-eCE with (a) 𝑙∗ = 6, 13, 26, 46, 60 for 𝐴∗ = 10 and (b) 𝐴∗ = 5, 10, 20, 40, 80 for 𝑙∗ = 26 at an ambient temperature of 245 K. Blue and
red cylinders represent the Terfonel-D and SMA. The length ratio is 𝑙∗ = 𝑙1∕𝑙2 = 𝑙T-D∕𝑙SMA and cross-sectional area ratio is 𝐴∗ = 𝐴1∕𝐴2 = 𝐴T-D∕𝐴SMA.
improving the 𝛥𝑇ad by controlling the length and cross-sectional area
ratios of Terfenol-D and MnCu is necessary. Here, the size of SMA is
fixed with 100 nm × 10 nm × 50 nm, and 𝑙∗ = 𝑙1∕𝑙2 = 𝑙T-D∕𝑙SMA = 6, 13,
26, 46, 60, and 𝐴∗ = 𝐴1∕𝐴2 = 5, 10, 20, 40, 80 are chosen to calculate
the impact of geometrical dimension on M-eCE, as shown in Fig. 7.

Fig. 7a shows 𝛥𝑇ad varying with the applied magnetic field 𝜇0𝐻
under various length ratios. It is observed that 𝛥𝑇ad changes non-
monotonically with the increase of magnetic field. When 𝑙∗ = 6, 𝛥𝑇ad
is negligible because the magneto-induced strain is difficult to achieve
the critical transformation strain. Under a larger 𝑙∗, the 𝛥𝑇ad increases
with increasing 𝑙∗, and a critical value of 𝑙∗ is seem to be observed
in the inset of Fig. 7a. The impact of 𝐴∗ on 𝛥𝑇ad is similar to the
case of 𝑙∗, as shown in Fig. 7b. These results about the impact of the
geometric dimension is in good agreement with the experimental [22]
and simulated results [33]. The increase of 𝐴∗ and 𝑙∗ not only enhances
𝛥𝑇ad, but also reduces the critical magnetic driving force. In a word, the
size of Terfenol-D should be more larger than the SMA, which is easier
to induce MT and achieve a larger 𝛥𝑇ad. Optimizing the geometric
dimension by increasing the length ratio and cross-sectional area ratios
of Terfenol-D and MnCu is a sensible way to improve 𝛥𝑇ad.

3.2.4. Impact of ambient temperature
A higher ambient temperature will lead to a bigger critical phase

transformation stress for MnCu SMA, which restricts the application of
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M-eCE cooling devices. Herein, the temperature-dependent M-eCE is
investigated, as shown in Fig. 8. During the high temperature region
(above the transition temperature), 𝛥𝑇ad decreases as the ambient
temperature increases. The adjustments of applied magnetic field (𝜇0𝐻)
and geometric dimension (𝐴∗ and 𝑙∗) could decrease the temperature
sensitivity of 𝛥𝑇ad and widen the work temperature window of the
M-eCE cooling system, which greatly promotes its commercial use. As
shown in Fig. 8a, 𝛥𝑇ad for 𝐴∗ = 40 and 80, 𝑙∗ = 26, and 𝜇0𝐻 = 0.19 T
is still higher than 10 K under 270 K. There is no obvious drop in 𝛥𝑇ad
under high temperature. Because of the force balance for the M-eCE
composite system, the magneto-induced strain (𝜀2 in Eq. (16)) increases
with 𝐴∗ and 𝑙∗, which plays a role in reducing the critical magnetic
field.

Similar to the mechanical load for eCE, the applied magnetic field
also plays a positive role in 𝛥𝑇ad. The higher magnetostrictive strain
caused by the bigger magnetic field would offer enough mechanical
load to induce MT under a high temperature, thus leading to an
appreciable 𝛥𝑇ad. The increase of magnetic field 𝜇0𝐻 , cross-sectional
area ratios 𝐴∗, and length ratios 𝑙∗ obviously enhances 𝛥𝑇ad, further
widening the work temperature window to about 30 K. These efforts
will make it possible to achieve room-temperature cooling without
contact by using the M-eCE composite.
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Fig. 8. The temperature dependence of adiabatic temperature change 𝛥𝑇ad under (a) various area ratios with 𝜇0𝐻 = 0.19 T and 𝑙∗ = 16, and (b) various magnetic fields 𝜇0𝐻 with
∗ = 20 and 𝑙∗ = 26.
Fig. 9. The performance of ML prediction in the (a) training and (b) testing, and (c) comparison of the ML predicted values and true values of 𝛥𝑇ad. The true value of 𝛥𝑇ad
signifies the phase-field calculated one.
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3.3. Machine learning for M-eCE

ML is adopted to predict 𝛥𝑇ad by means of the database from phase-
field simulation. Here 𝑅2, root means square error (𝑅𝑀𝑆𝐸), and mean
absolute error (𝑀𝐴𝐸) are used to evaluate the performance of the ML
neural network [79,82], i.e.,

𝑅2 = 1 −
∑𝑚
𝑖=1(𝑦𝑖 − 𝑦𝑖)

2

∑𝑚
𝑖=1(𝑦𝑖 − 𝑦𝑖)

, (22)

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑚

𝑚
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2, (23)

𝑀𝐴𝐸 = 1
𝑚

𝑚
∑

𝑖=1
|𝑦𝑖 − 𝑦𝑖|, (24)

where 𝑚 is the number of samples, 𝑦𝑖 is the true value of the sample, 𝑦𝑖
s the predictive value, and 𝑦𝑖 is the mean value. The value of 𝑅2 is close

to 1, which means that the error between the true value and predicted
value is tiny, indicating that the ML model performs well. Fig. 9 shows
the performance of ML in predicting 𝛥𝑇ad. 𝑅2 = 0.95 shows 𝛥𝑇ad
could be accurately predicted from the four characteristics. In addition,
𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 are 0.134 and 0.038 for training set, and 0.238, and
0.141 for testing set, respectively. This indicates the small difference
between the predicted and true values, as well as high accuracy of the
ML prediction model. A correct 𝛥𝑇ad for a given magnetic field, length
ratio, area ratio, and ambient temperature could be obtained through
the ML model. Herein, the predicted value coincides well with the PFM
simulated value, as shown in Fig. 9c. The configurations with larger
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𝛥𝑇ad are found to own the characteristics of large 𝐴∗ or 𝑙∗. Further,
compared with the phase-field calculations for M-eCE, the time-saving
ML model enhances computational efficiency by a factor of 104. ML
aves a lot of computational costs and shortens the 𝛥𝑇ad prediction time

from hours of phase-field calculation to seconds.
Furthermore, the optimization and parameter sensitivity analysis

are performed, as shown in Fig. 10. Considering the influence of mag-
netic field, geometric dimension, and ambient temperature on M-eCE,
a superior Pearson correlation coefficient (PCC) [83] can effectively
measure the importance of the influence of the characteristic parameter
𝑋 on the target value 𝑌 , i.e.,

𝑃𝐶𝐶(𝑋, 𝑌 ) =
∑𝑛
𝑖=1(𝑋𝑖 −𝑋)(𝑌𝑖 − 𝑌 )

√

∑𝑛
𝑖=1(𝑋𝑖 −𝑋)2

√

∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2

, (25)

where 𝑋 and 𝑌 are the means of 𝑋 and 𝑌 ; 𝑛 is the number of samples
in the data set. The correlation between 𝛥𝑇ad (𝑌 ) and characteristic
parameters, including magnetic field, geometric dimension and ambi-
ent temperature (𝑋), is calculated using the PCC method, as shown
n Fig. 10a. Larger PCC values indicated a more relevant correlation
etween the characteristic parameters and target parameter. The length
atio, area ratio, and magnetic field all play a positive role in 𝛥𝑇ad,
specially for the magnetic field. The negative PCC values mean a
indering effect of the ambient temperature on the target parameter
𝑇ad.

Moreover, a variance-based sensitivity analysis [84] is conducted
o identify the total effect on 𝛥𝑇 for each characteristic parameters,
ad
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Fig. 10. The histograms of (a) Pearson correlation coefficient (PCC) and (b) sensitivity analysis between 𝛥𝑇ad and characteristic parameter inputs. The inputs of characteristic
parameter include length ratio, area ratio, magnetic field, and temperature.
Fig. 11. The phase-field simulation of ML-optimization MEA-SMA composite with a
combination of 𝐴∗ = 37, 𝑙∗ = 25, and 𝜇0𝐻 = 0.384 T. The yellow solid line represents
the temperature change during the magneto-elastocaloric cooling cycle. The left side of
the illustration shows the martensitic transformation distribution in SMA, where blue
(𝜂3 = 0) represents austenite and red (𝜂3 = 1) represents the austenite phase. The right
side shows the temperature distribution.

as shown in Fig. 10b. Obviously, there is a similar level of total effect
as for the four characteristics from the results of PCC and sensitivity
analysis. The contribution to 𝛥𝑇ad for length ratio and area ratio
is equal, and the magnetic field is the most important to modulate
𝛥𝑇ad, which is similar to the PCC result. Based on the aforementioned
analysis, ML is employed to optimize the multiferroic device and find
the configuration with the 𝛥𝑇max

ad . In terms of the MEA-SMA composite
size, ML optimizations show that 𝐴∗ = 37, 𝑙∗ = 25 and 𝜇0𝐻 = 0.384 T
could achieve a large 𝛥𝑇ad (approx. 15 K) at an ambient temperature of
245 K. According to the ML optimizations, a phase-field simulation for
a combination of 𝐴∗ = 37, 𝑙∗ = 25, and 𝜇0𝐻 = 0.384 T is performed, as
shown in Fig. 11. The 𝛥𝑇max

ad by this PFM simulation is 14 K, which
agrees well with the results from ML optimizations. The large 𝛥𝑇ad
is attributed to the complete MT during SMA under the optimized
MEA-SMA composite. This configuration further exhibits temperature
insensitivity and magnetic-field insensitivity that a 𝛥𝑇ad of 11 K can
still be obtained under a low magnetic field of 0.19 T and a high
ambient temperature of 275 K. The performance enhancements of M-
eCE indicate that ML could accelerate and optimize the design of M-eCE
cooling devices with larger 𝛥𝑇 .
10

ad
4. Conclusions

In summary, we have proposed a non-isothermal PFM coupled with
magnetostrictive constitutive model and a combination of PFM and ML
to provide a quantitative simulation and understanding of recent exper-
iments on the low-field induced M-eCE in the multiferroic MEA-SMA
composite. In particular, to avoid the problematic calculation due to
the non-differentiable energy barrier function across the transformation
temperature, the austenite–martensite transition energy barrier in PFM
is constructed as a smooth function of temperature by using the hy-
perbolic tangent function. It is shown that within this PFM framework,
ferroelastic behavior in SMA, magnetostrictive behavior in MEA and M-
eCE in MEA-SMA can be well reproduced. The maximum temperature
rise/drop of SMA cuboid in the composite system during the rapid
application and removal of the magnetic field can be well predicted
by the proposed PFM, which are consistent with the experimental
observations.

After examining the influence of magnetic field, geometric dimen-
sion including length ratio and area ratio, and ambient temperature
on M-eCE, it is found that the magneto-induced strain in SMA plays a
critical role in determining 𝛥𝑇ad, and manipulating magnetic field and
geometric dimension can improve 𝛥𝑇ad and work temperature window.
In detail, a large 𝛥𝑇ad of 10–14 K and a wide work temperature window
from 245 to 275 K could be obtained under a low magnetic field of
0.15–0.38 T.

Furthermore, ML leveraging a database derived from phase-field
simulations is performed to accelerate the prediction of M-eCE. 𝛥𝑇ad
could be accurately predicted within 𝑅2 = 0.95. ML significantly
reduces computing costs and accelerates 𝛥𝑇ad prediction from hours of
phase-field calculation to seconds. Along with the PCC and sensitivity
analysis in ML, it is revealed that a combination of 𝐴∗ = 37, 𝑙∗ = 25,
and 𝜇0𝐻 = 0.384 T by ML optimization could realize a large 𝛥𝑇ad
around 14 K at an ambient temperature of 245 K. This configuration
further exhibits temperature and magnetic-field insensitivity, which
indicates the low-field M-eCE could be achieved by designing MEA-
SMA composite based on PFM and ML. Compared to the multi-scale
approach [33] and pure ML approach [70], the proposed combination
of PFM and ML is easier to be extended to other multicaloric materials
or cooling systems (e.g., electro-elastocaloric effect [20]), and provides
a potential computational toolkit to unveil strategies for designing
high-performance M-eC cooling devices.
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Appendix. Finite-element implementation

Here, we use finite element method to solve the governing equa-
tions in Eqs. (12), (19), (20) and convert the strong forms into weak
forms by introducing a test function. The degree of freedom is set as
𝑢1, 𝑢2, 𝑢3, 𝜂1, 𝜂2, 𝜂3, 𝑇 , and the weak forms are formulated as

0 = ∫𝛺
𝜎𝑖𝑗𝜙𝑖,𝑗d𝑣 − ∫𝜕𝛺

𝜎𝑖𝑗𝑛𝑗𝜙𝑖d𝑠

0 = ∫𝛺

[

𝜓𝑖
( �̇�𝑖
𝐿

+
𝜕𝑓 chem

𝜕𝜂𝑖
+
𝜕𝑓 ela

𝜕𝜂𝑖

)

+ 𝜓𝑖,𝑖𝛽𝜂𝑖,𝑖
]

d𝑣

− ∫𝜕𝛺
𝜓𝑖𝛽𝜂𝑖,𝑖𝑛𝑖d𝑠

= ∫𝛺

[

𝜗
(

𝑐v�̇� −𝑄
3
∑

𝑖=1
�̇�𝑖
)

+ 𝜗,𝑖𝛼𝑇,𝑖
]

d𝑣 − ∫𝜕𝛺
𝜗𝛼𝑇,𝑖𝑛𝑖d𝑠

(A.1)

where 𝜙𝑖, 𝜓𝑖 and 𝜗 are the test function for 𝑢𝑖, 𝜂𝑖 and 𝑇 , respectively.
ote that the surface terms (𝜎𝑖𝑗𝑛𝑗 and 𝑇,𝑖𝑛𝑖) in Eq. (A.1) represent the

urface traction and heat flux boundary conditions.
By introducing the shape functions for independent variables and

est functions, the discretized equations can be written as

𝑖 = 𝑁𝐼𝑢𝐼𝑖 𝜂𝑖 = 𝑁𝐼𝜂𝑖
𝐼 �̇�𝑖 = 𝑁𝐼 �̇�𝑖

𝐼 𝑇 = 𝑁𝐼𝑇 𝐼

̇ = 𝑁𝐼 �̇� 𝐼 𝜙𝑖 = 𝑁𝐼𝜙𝐼𝑖 𝜓𝑖 = 𝑁𝐼𝜓𝑖
𝐼 𝜗 = 𝑁𝐼𝜗𝐼

(A.2)

here 𝐼 denotes the node number. 𝑁𝐼 is the shape function. After the
nsertion of Eq. (A.2) into Eq. (A.1), the following elemental residuals
an be obtained
𝐼
𝑢𝑖
= ∫𝛺

𝜎𝑖𝑗𝑁
𝐼
,𝑗d𝑣 − ∫𝜕𝛺
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= ∫𝛺

[
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1
𝐿
�̇�𝑖 +
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𝜕𝜂𝑖

)

+ 𝛽𝜂𝑖,𝑖𝑁𝐼
,𝑖

]

d𝑣

− ∫𝜕𝛺
𝑁𝐼𝛽𝜂𝑖,𝑖𝑛𝑖d𝑠

𝑅𝐼𝑇 = ∫

[

𝑁𝐼
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3
∑
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)

+𝑁𝐼
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]

d𝑣 − ∫ 𝑁𝐼𝛼𝑇,𝑖𝑛𝑖d𝑠.

(A.3)
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With regard to the time dependence of the residuals, we use the
mplicit backward Euler method to realize the time discretization [62].
he residual equation for the current time step 𝑡𝑛+1 is

𝐼
𝑛+1 = 𝐑𝐼

(

𝐝𝐽𝑛+1 ,
𝐝𝐽𝑛+1 − 𝐝𝐽𝑛

𝛥𝑡

)

, (A.4)

where (𝐝𝐽𝑛+1 − 𝐝𝐽𝑛 )∕𝛥𝑡 = �̇�𝐽𝑛+1 and 𝛥𝑡 is time step. 𝐝𝐽𝑛+1 should be solved
in this equation. For solving these non-linear equations, the Newton
iteration scheme is performed at each time step. The corresponding
iteration matrix is

𝐒𝐼𝐽 = 𝐊𝐼𝐽 + 1
𝛥𝑡

𝐃𝐼𝐽 , (A.5)

where 𝐊𝐼𝐽 is the stiffness matrix and 𝐃𝐼𝐽 is the damping matrix. The
PFM is numerically implemented in open source Multiphysics Object
Oriented Simulation Environment (MOOSE) [81].
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