

View

Online


Export
Citation

RESEARCH ARTICLE |  AUGUST 16 2022

A machine learning strategy for modeling and optimal
design of near-field radiative heat transfer 
Special Collection: Thermal Radiation at the Nanoscale and Applications

Shizheng Wen  ; Chunzhuo Dang; Xianglei Liu  

Appl. Phys. Lett. 121, 071101 (2022)
https://doi.org/10.1063/5.0103363

 03 June 2024 18:03:10

https://pubs.aip.org/aip/apl/article/121/7/071101/2834033/A-machine-learning-strategy-for-modeling-and
https://pubs.aip.org/aip/apl/article/121/7/071101/2834033/A-machine-learning-strategy-for-modeling-and?pdfCoverIconEvent=cite
https://pubs.aip.org/apl/collection/1003/Thermal-Radiation-at-the-Nanoscale-and
javascript:;
https://orcid.org/0000-0002-7311-1743
javascript:;
javascript:;
https://orcid.org/0000-0001-5647-5206
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0103363&domain=pdf&date_stamp=2022-08-16
https://doi.org/10.1063/5.0103363
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2299795&setID=592934&channelID=0&CID=838669&banID=521606143&PID=0&textadID=0&tc=1&scheduleID=2219889&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fapl%22%5D&mt=1717437789927387&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fapl%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0103363%2F16481278%2F071101_1_online.pdf&hc=ac77428af6b938de872a87b9bdcfe79202115e3d&location=


A machine learning strategy for modeling
and optimal design of near-field radiative
heat transfer

Cite as: Appl. Phys. Lett. 121, 071101 (2022); doi: 10.1063/5.0103363
Submitted: 15 June 2022 . Accepted: 28 July 2022 .
Published Online: 16 August 2022

Shizheng Wen, Chunzhuo Dang, and Xianglei Liua)

AFFILIATIONS

School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Note: This paper is part of the APL Special Collection on Thermal Radiation at the Nanoscale and Applications.
a)Author to whom correspondence should be addressed: xliu@nuaa.edu.cn

ABSTRACT

The recent decade has witnessed the advent of near-field radiative heat transfer (NFRHT) in a wide range of applications, including thermal
photovoltaics and thermal diodes. However, the design process for these thermal devices has remained complex, often relying on the intuition
and expertise of the designer. To address these challenges, a machine learning (ML) strategy based on the combination of an artificial neural
network (ANN) and a genetic algorithm (GA) is presented. The ANN is trained to model representative scenarios, viz., NFRHT between meta-
materials and NFRHT and thermal rectification between nanoparticles. The influence of different problem complexities, i.e., the number of
input variables of function to be fitted, on effectiveness of the trained ANN is investigated. Test results show that ANNs can obtain the radia-
tive heat flow and rectification ratio accurately and rapidly. Subsequently, physical parameters for the largest radiative heat flow and rectifica-
tion ratio are determined by the utilization of GA on the trained ANN, and underlying mechanisms of deterministic optimum are discussed.
Our work shows that data-driven ML methods are a powerful tool, which offers unprecedented opportunities for future NFRHT research.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0103363

Near-field radiative heat transfer (NFRHT) has many promising
applications in a variety of fields from electronic devices to renewable
energy utilization due to its high efficiency of energy transmission.1–6

Previous theoretical research mainly focuses on cases of enhancing the
radiative heat transfer far beyond the black-body limit (thermal photo-
voltaics,7–11 thermal imaging12–14) and active control of the heat flow
(thermal diodes,15,16 transistors,17 and switches18–20). Common meth-
ods in previous designs of enhancing and controlling heat flow include
inducing surface and hyperbolic modes, employing new materials
whose dielectric function is sensitive to the temperature and exploiting
asymmetric nanophotonic structures.21–26 Nevertheless, these methods
very often rely on the intuition and expertise of researchers, ultimately
limiting the development of structure for desired radiative properties.
Additionally, conventional methods of calculating NFRHT, including
rigorous coupled-wave analysis (RWCA)1,27,28 and dyadic Green’s
functions (DGFs),29,30 are very computationally expensive. Therefore,
exploring a more systematic and efficient method to design thermal
devices is very imperative.

In recent years, the advancement of machine learning (ML)
algorithms and the abundance of open source software may provide
alternative ways for researchers to tackle optimization problems in

near-field radiative heat transfer. Prompted by ML’s attractive advan-
tages, such as identifying multi-dimensional correlations and exploring
massive design spaces, thermal-science research has successfully begun
to employ ML, thereby bringing fresh perspectives to its conventional
problems.31–34 In the field of thermal radiation, a large body of
researchers are developing ML assisted code that can be efficiently
used to optimize structures for a specific purpose.35,36 For example,
Ben-Abdallah et al.37,38 designed the composite structures to control
the thermal emission and local density of state based on genetic algo-
rithms (GAs). Hu et al.39 took the power density and system efficiency
as the coupling parameters to optimize the Tamm emitter based on
the Monte Carlo tree search algorithm. Sakurai et al.40 designed an
ultranarrow-band wavelength-selective thermal radiator by combining
the electromagnetic field calculation and Bayesian optimization. Seo
et al.41 applied an evolutionary algorithm to find the optimal geomet-
ric parameters of a solar thermal absorber for the largest solar absorp-
tance. However, recent progress on this topic has mainly focused on
harnessing solar radiation for power generation, and the characteristic
scale of it is in the far-field radiative heat transfer. The more modern
and hotter topics about how ML can be effectively applied in NFRHT
remain unclear.
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In this work, by combining two data-driven ML methods, viz.,
artificial neural networks (ANNs)42 and genetic algorithms (GAs), we
propose a flow chart for modeling and optimal design of near-field
thermal devices as shown in Fig. 1. The adopted workflow is enabled
by the following innovative points: first, a sampling method based on
Latin hypercube sampling (LHS) and sensitivity analysis (SA) is used
for the design parameters of the problem to be studied. These sampled
points are calculated with an accurate NFRHT method so as to build
our training datasets. Second, a surrogate ANN model was trained to
construct a functional model from an input feature vector to a corre-
sponding output feature vector, which can be used to predict the
NFRHT and rectification ratio of corresponding structures. Finally,
GA was applied to the surrogate ANN model to identify the optimal
solution for the problem based on emulating biological evolutionary
theories.43,44 Detailed descriptions and settings of ANN and GA for
this research can be seen in the supplementary material.

To illustrate these ideas, the proposed workflow has been first
dedicated to tackling the structural optimization of NFRHT between
multilayered metamaterials, which shows unprecedented potentials to
manipulate light and heat beyond substances existing in nature.
NFRHT between two periodic multilayered metamaterials configured

by doped silicon (D-Si) and germanium (Ge) in Ref. 45 are reconsid-
ered. The system under consideration is shown in Fig. 2. In the model-
ing, tm and td are the thicknesses of D-Si (metallic behavior) and Ge
(dielectric), respectively. The resulting period P ¼ tm þ td is set to 50
so as to approximate a semi-infinite structure. Metal-dielectric (MD)
configuration for the two layers adjacent to vacuum is employed. The
temperature of each body is assumed to be uniform at Th and Tl. The
dielectric function of D-Si (n-type) with a doping concentration of Dsi

is obtained from Ref. 46. The relative permittivity of vacuum and Ge is
treated as constants 1 and 16, respectively. NFRHT between two mul-
tilayered structures can be described as

Qpla ¼
1
4p2

ð1
0

H x;T1ð Þ �H x;T2ð Þ½ �dx

�
ð1
0

b
X
j¼s;p

nj x;bð Þdb; (1)

where Hðx;TÞ represents the mean energy of Planck’s oscillator,
njðx; bÞ is the energy transmission coefficient depending on the
reflection coefficient matrix of the structure, and j is either s or p for
different polarizations. In the present study, the scattering theory and

FIG. 1. Outline of the proposed machine learning strategy. Goal of this workflow is to model the NFRHT/rectification ratio (objective function) between multilayered metamateri-
als (MMs) and nanoparticles (NPs) and decide design parameters for the largest value of objective functions.
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effective medium theory (EMT) in Ref. 45 are used to calculate the
accurate and approximate value of energy transmission coefficient,
respectively.

Usually, when the functional relationship between input a and
output QANN becomes more complex, larger training dataset and net-
work architectures are required so as to retain good prediction perfor-
mance.47 To better reflect the applicability of ANNs to problems with
different complexities, four different functional models were consid-
ered, including two-input model {input: (tm; td), output: Qpla}, three-
input model {input: (tm; td; dpla), output: Qpla}, four-input model
{input: (tm; td; dpla; Th), output: Qpla}, and five-input model {input:
(tm; td; dpla; Th; Dsi), output: Qpla}. The range of considered variables
for sampling is shown in Table I. Parameters will take the default value
if they are not considered as input variables. The temperature of Tl is
taken as 0K in all cases.

A uniformly distributed sampling method like LHS is first used,
and four different sizes of training datasets without prejudice (1000,
2000, 3000, and 4000) are obtained toward problems with different
complexities. However, according to Refs. 48 and 49, neural networks
are biased toward learning less complex functions, and uniform input
data distributions over the parameter space struggle to learn high-
gradient components and often fail to train. To address this challenge,
non-uniform input data distributions are generated, and more sam-
pled points in high-gradient regions are conducted additionally sam-
pling. We mainly implement the global sensitivity analysis (GSA) to
help us identify the essential parameters for the steep variation

(gradients), thereby generating our additionally sampled points. The
results show that the vacuum gap distance dpla is the most influential
parameter, aligning with the existing evanescent wave theory in
NFRHT. Additional 300 points, 400 points, and 500 points for three-
input, four-input, and five-input models, were sampled in regions with
small values of dpla. Subsequently, these training datasets and four
different ANN architectures are applied to train the model. More
details about sampling methods and training process can see the
supplementary material.

Adjusted coefficients of determination (Adjusted-R2) are used to
characterize the performance of the developed model, which can be
expressed as follows:

R2 ¼ 1�
Pn

i¼1 ypredict;i � ydata;ið Þ2Pn
i¼1 ydata;i � �ydata;i
� �2 ; (2a)

Adjusted� R2 ¼ 1� 1� R2ð Þ n� 1ð Þ
n� k� 1

; (2b)

where ypredict;i is the value predicted by ANNs at test data point i, ydata;i
is the actual value calculated by the scatter theory at point i, n is the
size of the test dataset, and k is the number of input variables for the
model. The results of trained models on test dataset (100 points
generated by LHS) are shown in Table II. It can be clearly seen that
Adjusted-R2 for four models is approximately 1. This suggests that
prediction results of the neural network are in good agreement with
true values in considered ranges. In Fig. 3, we show errors of different
testing structures predicted by the five-input ANN and EMT. The
error is defined by the following equation:

FIG. 2. Schematic of near-field thermal radiation between two multilayered meta-
materials (at temperatures Th and Tl, respectively), separated by a vacuum gap
dpla. The thickness of D-Si with a doping concentration of Dsi and Ge layers are tm
and td, respectively, resulting in a unit cell of period P ¼ tm þ td.

TABLE I. Range of considered variables for multilayer metamaterials.

Parametera tm td dpla Th Dsi

Lower bound 10 10 10 300 1� 1018

Upper bound 500 500 500 400 1� 1020

Default value 100 300 1� 1020

aUnits for tm; td, and dpla are nanometer (nm). Units for Th and Dsi are Kelvin (K) and
cm�3, respectively.

TABLE II. Adjusted-R2 results for the ANN model of four different inputs.

Category Two-input Three-input Four-input Five-input

Adjusted-R2 1 1 0.9998 0.9996

FIG. 3. The errors of different testing structures predicted by ANN and EMT. The
testing data sets are randomly generated by LHS. In order to show the characteris-
tics of EMT, we sort the data by dpla=ðtm þ tdÞ.
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Error ¼
����Qpredicted � Qaccurate

Qaccurate

����: (3)

From the results, we can see that only when dpla=ðtm þ tdÞ is large
enough, can EMT be accurate to predict the NFRHT. This aligns with

the application conditions of EMT in NFRHT between multilayer
metamaterials.45 In contrast, the ANN model can have relative small
errors (less than 5%) in all ranges.

Subsequently, the trained ANN is used as a surrogate model, and
another ML technique, viz., genetic algorithm, is applied for finding

TABLE III. Optimization results for the ANN surrogate model of four different inputs. Numbers in brackets indicate the default value of corresponding parameters. QANN is the
radiative heat flow predicted by the ANN. Qscatter is the accurate heat flow calculated by the scatter theory on the deterministic optimum. Error is defined in Eq. (3).

Categorya tm td dpla Th Dsi QANN Qscatter Error

Two-input 10 10 (100) (300) (1� 1020) 6744 6438 4.75%
Three-input 10 10 10 (300) (1� 1020) 191883 197550 2.87%
Four-input 320 10 10 400 (1� 1020) 666398 623320 6.91%
Five-input 500 10 10 400 1:93� 1019 1334861 1391800 4.09%

aUnits for QANN and Qscatter areW/m2.

FIG. 4. NFRHT as a function of the thickness of D-Si tm and Ge td in the (a) two-input model; (b) three-input model; (c) four-input model. (d) NFRHT as a function of the thick-
ness of D-Si tm and the doping concentration of D-Si Dsi in the five-input model. The blue circle and red pentacle indicate the maximum NFRHT given by the rigorous scattering
method and GA.
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values of input variables for the optimal output. Due to the high effi-
ciency of inference for ANNs, the whole optimization process is taken
no more than 1min, and the corresponding results are shown in Table
III. To verify the reasonability of results, we calculate the dependence
of NFRHT as a function of design parameters using the rigorous scat-
tering method and compare the optimal value with that given by GA.
Physically speaking, we only need to look for the optimal tm; td, and
Dsi, because it is obvious to enhance the NFRHT by decreasing vac-
uum gap distances and improving the temperature difference between
the emitter and receiver, so as to intensify the evanescent and propa-
gating waves. For the two-input, three-input, and four-input model,
NFRHT as a function of the thickness of D-Si tm and Ge td are shown
in Figs. 4(a)–4(c), respectively. For the five-input model, considering
the optimal value for td in all models (two-input, three-input, four-
input, and five-input) is 10 nm, and the NFRHT as a function of tm
and Dsi is only shown in Fig. 4(d). Optimal values obtained by scatter-
ing methods and GA are represented by blue circle and red pentacle,
respectively. The results show that values determined by GA align well

with that determined by the rigorous scattering method in Figs.
4(a)–4(d). For the two-input and three-input model, the optimal
region for NFRHT corresponds to the lower bound of tm and td in
Table I, which can be attributed to the well excitation of wideband
hyperbolic modes.45 For the four-input and five-input model,
inversely, optimal values for tm correspond to the upper bound in
Table I. Although there exists a difference in Fig. 4(c), we find that the
heat flux saturates and reaches nearly a constant when tm is larger
than 100nm. This is because the whole system can be approximated
as the NFRHT between two semi-infinite plates made of silicon with
the gap distance equals to 20 nm, given that the dielectric function of
Ge is constant. Therefore, the optimization results of the four-input
and five-input model for 100<¼ tm<¼ 500 are reasonable.

To elucidate the underlying mechanism for the change of optimal
tm value, contour plots are generated in Figs. 5(a) and 5(b) for three
and four input cases to show the dependence of the transmission coef-
ficient n (equals to np þ ns) on the lateral wave vector b and angular
frequency x. Figure 5(b) shows that n of the four-input model has

FIG. 5. Transmission coefficient contours nðx;bÞ of the deterministic optimum for the (a) three-input model; (b) four-input model; (c) five-input model. Corresponding spectral
heat flux and Planck oscillator energy are shown in (d).
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much larger contribution around 2:5� 1014 rad/s mainly caused by
the excitation of surface plasmon polaritons (SPPs) at the Si-vacuum
interface, demonstrated by the SPP dispersion

kSPP ¼ x=c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eD�Si=ð1þ eD�SiÞ

p
. At the same time, Fig. 5(d) shows

that the Planck oscillator energy in high angular frequency will be acti-
vated at 400K. Therefore, it will have a good match with the SPPs, and
subsequently, a significant increase in spectral heat transfer in the high
frequency band will occur, shown in Fig. 5(d). For the five-input
model, we find that a lower dope concentration will lead to a higher
value of the D-Si dielectric function’s real part. This means that the
ML algorithm can adjust its resonant frequency of the excited mode
when the doping of silicon is further listed as the objective for optimi-
zation. The results show that GA accurately align its resonant
frequency to region for high Hðx;TÞ value, which gives rise to the
larger enhancement of NFRHT, shown in Figs. 5(c) and 5(d). Above
analysis verifies the correctness of deterministic optimum determined
by the ANN and GA. It fully demonstrates the great potential of ML
methods in the modeling and optimal design of NFRHT.

To illustrate the efficiency of our proposed ML method, the
estimated time of each part in Fig. 1 for the design of multilayeredmeta-
materials is listed in Table IV. In our workstation (Xeon E5-2697 v4),
the consumed time for calculating 1000 points based on scattering
methods is 3.4 h. Because we apply the second-order optimization
algorithm, the rate of convergence for training the ANNmodel is very
fast, and the consumed time is less than 10min. After building the sur-
rogate model, it only takes 30 s for GA to find the optimal design. In
comparison, parametric analysis methods based on the rigorous

scattering method are time consuming. For example, 2500 points are
calculated to draw the 50� 50 contour plot in Fig. 4 with only consid-
ering two variables. When considering five variables, conventional
methods will take huge computational cost and are nearly impossible.
We also need to mention that the training process is not fully opti-
mized. There is still space to improve the speed and accuracy.

In order to verify the applicability of our proposed workflow in
different structures and issues, another important categories in the
near-field regime, viz., NFRHT and rectification ratio between nano-
particles, are further considered. In this paper, we consider the config-
uration of two nanospheres made of the same polytype of 3C-SiC.50

The accurate NFRHT between two spheres can be derived by using
dyadic Green’s functions (DGFs) and the fluctuation-dissipation
theorem, which is described in detail in Ref. 30. The performance of
rectifiers can be characterized by the thermal rectification ratio as

Rratio ¼
Qf � Qr

Qr
; (4)

where Qf and Qr are the net heat fluxes in the forward and reverse
scenarios, respectively. As shown in Fig. 6, for the forward scenario,
3C-SiC with radius Ra is the emitter at the temperature of T1, and the
receiver 3C-SiC is maintained at T2. For the reverse scenario, tempera-
tures of two spheres are switched, and the reverse NFRHT is Qr. Gap
distances for both scenarios are dpar.

Here, we only discuss themost complex condition, five-inputmodel.
The range of considered variables for sampling is shown in Table V.

FIG. 6. Schematic diagram of NFRHT and thermal rectification between two nanospheres made of 3 C-SiC separated by a vacuum gap dpar . Ra and Rb represent the radius of
sphere a and sphere b. T1 and T2 are set as the temperature of the emitter and receiver, respectively.

TABLE IV. Estimated time of the proposed workflow for the design of multilayered
metamaterials.

Process Accurate calculation Model training GA optimization

cost 3.4 h/1000 points �10min �30 s

TABLE V. Range of considered variables for nanoparticles.

Parametera T1 T2 dpar Ra Rb

Lower bound 200 200 10 100 10
Upper bound 1000 1000 200 200 50

aUnits for T1 and T2 are Kelvin (K). Units for dpar; Ra, and Rb are nanometer (nm).
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Training details of ANNs are in the supplementary material.
Deterministic parameters for the largest NFRHT and rectification ratio
are shown in Table VI. We can see that trained ANNs are accurate
enough for predicting the value of deterministic optimum of nanopar-
ticles and errors between predicted values, and accurate ones are no
more than 1%. The deterministic parameters align well with results in
Ref. 50, which did more parametric analysis and calculations. This also
demonstrates that the proposed workflow has great advantages in
terms of the applicability in different issues and huge computational
reduction.

To summary, by utilizing two mainstream ML algorithms, viz.,
ANN and GA, we reported a systematic workflow for modeling and
optimal design of NFRHT. Through applying it to representative sce-
narios, including NFRHT between multilayer metamaterials, NFRHT,
and thermal rectification between nanoparticles, we fully demonstrate
its huge computational reduction and wide applicability in different
NFRHT research works. These advantages are believed to have great
potential in the future scientific research and industrial production.
Next, better sampling methods and more advanced machine learning
algorithms, such as convolutional/recurrent/graph neural networks in
NFRHT, can be further explored. Spectral radiative heat transfer of
arbitrary structures andmaterials is expected for modeling so as to bet-
ter conduct the inverse design of the system.

See the supplementary material for detailed introduction of the
ML strategy and training process of ANNs.
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